1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
package tris
import (
"math/rand"
"time"
)
type Point struct {
X, Y int
}
// Add adds two points together
func (p Point) Add(q Point) Point {
return Point{X: p.X+q.X, Y: p.Y+q.Y}
}
// A piece contains a value per rotation
type Piece [4]uint16
// A table that represents each piece from https://tetris.fandom.com/wiki/SRS
// in binary starting with 1 top left going per row, here in hexadecimal shorthand.
var (
IPiece = Piece{0x0F00, 0x4444, 0x00F0, 0x2222}
JPiece = Piece{0x1700, 0x6220, 0x0740, 0x2230}
LPiece = Piece{0x4700, 0x2260, 0x0710, 0x3220}
OPiece = Piece{0x6600, 0x6600, 0x6600, 0x6600}
SPiece = Piece{0x6300, 0x2640, 0x0630, 0x1320}
TPiece = Piece{0x2700, 0x2620, 0x0720, 0x2320}
ZPiece = Piece{0x3600, 0x4620, 0x0360, 0x2310}
)
type Rotation int
const (
Spawn Rotation = iota
Clockwise
Flip
CounterClockwise
)
// a placement is the combination of a piece and where it exactly is on the board
// we use this both for the actual piece and for checking hypothetical positions
type Placement struct {
piece Piece
X int
Y int
Rot Rotation
Lock time.Time
}
// Collide checks if any squares of the Placement and the Field overlap
func (p Placement) Collide(f Field) bool {
pf, ok := p.Field()
for x := 0; x < 10; x++ {
for y := 0; y < 20; y++ {
if f[y][x] && pf[y][x] {
return true
}
}
}
return !ok
}
// Field translates the Placement into a Field format
// When it gets out of the board, we return that to the caller with a bool
func (p Placement) Field() (Field, bool) {
var f Field
ok := true
for _, point := range p.Points() {
if point.X < 0 || point.X > 9 || point.Y > 19 {
ok = false
continue
}
if point.Y < 0 { // above the playing field we count the piece as on the board
continue
}
f[point.Y][point.X] = true
}
return f, ok
}
// Points transforms the piece to a list of coordinates
func (p Placement) Points() []Point {
piece := p.piece[p.Rot]
var points []Point
x := []int{3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0}
y := []int{0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3}
for bm, i := uint16(0x8000), 0; i < 16; bm, i = bm >> 1, i + 1 {
if piece&bm == bm {
points = append(points, Point{X: p.X + x[i], Y: p.Y + y[i]})
}
}
return points
}
type Bag []Piece
var LockDelay = time.Second/2
var ReferenceBag = Bag{IPiece, JPiece, LPiece, OPiece, SPiece, TPiece, ZPiece}
func NewBag() Bag {
b := ReferenceBag.Randomize()
return b
}
func (b Bag) Randomize() Bag {
rand.Shuffle(len(b), func(i, j int) { b[i], b[j] = b[j], b[i] })
return b
}
func (b Bag) Pick() (Bag, Placement) {
if len(b) == 0 {
b = NewBag()
}
piece := Placement{piece: b[0], X: 3, Y: -2, Lock: time.Now()}
b = b[1:]
return b, piece
}
type Field [20][10]bool
// Add merges the Field and Piece together
func (f Field) Add(p Placement) Field {
fn := f
for _, point := range p.Points() {
if point.Y < 0 || point.Y > 19 || point.X < 0 || point.X > 9 {
continue
}
fn[point.Y][point.X] = true
}
return fn
}
// The command line tool uses this representation as the actual playing field
func (f Field) String() (output string) {
for _, row := range f {
for _, block := range row {
if block {
output += "\u2588\u2589"
} else {
output += "\u2591\u2591"
}
}
output += "|\n"
}
return output
}
|